Analytic Combinatorics Exercise Sheet 5

Exercises for the session on 29/5/2017

Problem 5.1

A generating function of the form $F(z)=\Phi(z, F(z))$ is said to have characteristic function $\Phi(z, w)$, and a general formula for such a function is given by

$$
\begin{equation*}
\left[z^{n}\right] F(z) \sim \frac{\alpha}{2 \sqrt{\pi}}\left(\frac{1}{r}\right)^{n} n^{-\frac{3}{2}} \tag{1}
\end{equation*}
$$

where r is the smallest positive real solution to the simultaneous equations

$$
\Phi(r, s)=s \text { and } \frac{\partial \Phi}{\partial w}(r, s)=1
$$

and where

$$
\alpha=\sqrt{\frac{2 r \frac{\partial \Phi}{\partial z}(r, s)}{\frac{\partial^{2} \Phi}{\partial w^{2}}(r, s)}}
$$

Let $S(z)$ denote the generating function for the class of bracketings, as defined in Problem 1.2. Find r and evaluate the right-hand-side of (1) to obtain

$$
\left[z^{n}\right] S(z) \sim \sqrt{\frac{r}{\pi 8 \sqrt{2}}}\left(\frac{1}{r}\right)^{n} n^{-\frac{3}{2}}
$$

Problem 5.2

Show that the centre of any tree contains at most two vertices. Show also that if the centre of a tree contains two vertices, then those vertices are neighbours.

Problem 5.3

Show that the distribution of the number of cycles of length $l \in \mathbb{N}$ in a random permutation of size n converges to a Poisson distribution of rate $1 / l$.

Problem 5.4

The saddle-point bound is given by

$$
\begin{equation*}
\left[z^{n}\right] G(z) \leq \frac{G(\zeta)}{\zeta^{n}} \tag{2}
\end{equation*}
$$

where ζ is the unique real root to $\frac{\zeta G^{\prime}(\zeta)}{G(\zeta)}=n+1$.
Evaluate the right-hand-side of (2) for $G(z)=e^{z}$, and show that the bound obtained is higher than the true value by a factor of $\sqrt{2 \pi n}$.

The saddle-point approximation formula is given by

$$
\begin{equation*}
\left[z^{n}\right] G(z) \sim \frac{G(\zeta)}{\zeta^{n+1} \sqrt{2 \pi g^{\prime \prime}(\zeta)}} \tag{3}
\end{equation*}
$$

where $g(z)=\ln G(z)-(n+1) \ln z$.
Evaluate the right-hand-side of (3) for $G(z)=e^{z}$, and show that the expression obtained is correct.

Problem 5.5

Evaluate the right-hand-side of (2) for $G(z)=(1+z)^{2 n}$, and show that the bound obtained is higher than the true value by a factor of $\sqrt{\pi n}$. Then evaluate the right-hand-side of (3), and show that the expression obtained is correct.

Problem 5.6

Let S_{n} denote the number of ways to partition a labelled set of size n (so, for example, $S_{3}=5$ by considering the partitions $\{1\}\{2\}\{3\},\{1\}\{2,3\},\{2\}\{1,3\}$, $\{3\}\{1,2\}$, and $\{1,2,3\}$), and let $S(z)=\sum_{n \geq 0} \frac{S_{n}}{n!} z^{n}$ denote the corresponding exponential generating function.

Evaluate the right-hand-side of (2) for $G(z)=S(z)$ to show

$$
\left[z^{n}\right] S(z) \leq \frac{e^{n-1}}{(\ln n)^{n}}
$$

(you may use the fact that the solution to the equation $\zeta e^{\zeta}=n+1$ is given by $\zeta \sim \ln n-\ln \ln n)$.

